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1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic
solutions to Hamiltonian systems. All this will be done in the convex case; that
is, we shall study the boundary-value problem

ẋ = JH 0(t, x)

x(0) = x(T )

with H(t, ·) a convex function of x, going to +1 when kxk ! 1.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian H(x) is au-
tonomous. For the sake of simplicity, we shall also assume that it is C1.

We shall first consider the question of nontriviality, within the general frame-
work of (A1, B1)-subquadratic Hamiltonians. In the second subsection, we shall
look into the special case when H is (0, b1)-subquadratic, and we shall try to
derive additional information.

The General Case: Nontriviality. We assume that H is (A1, B1)-sub-
quadratic at infinity, for some constant symmetric matrices A1 and B1, with
B1 �A1 positive definite. Set:
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� : = smallest eigenvalue of B1 �A1 (1)

� : = largest negative eigenvalue of J
d

dt
+A1 . (2)

Theorem 1 tells us that if �+ � < 0, the boundary-value problem:

ẋ = JH 0(x)
x(0) = x(T )

(3)

has at least one solution x, which is found by minimizing the dual action func-
tional:

 (u) =

Z
T

o


1

2

�
⇤�1
o

u, u
�
+N⇤(�u)

�
dt (4)

on the range of ⇤, which is a subspace R(⇤)2
L

with finite codimension. Here

N(x) := H(x)� 1

2
(A1x, x) (5)

is a convex function, and

N(x)  1

2
((B1 �A1)x, x) + c 8x . (6)

Proposition 1. Assume H 0(0) = 0 and H(0) = 0. Set:

� := lim inf
x!0

2N(x) kxk�2
. (7)

If � < �� < �, the solution u is non-zero:

x(t) 6= 0 8t . (8)

Proof. Condition (7) means that, for every �0 > �, there is some " > 0 such that

kxk  ") N(x)  �0

2
kxk2 . (9)

It is an exercise in convex analysis, into which we shall not go, to show that
this implies that there is an ⌘ > 0 such that

f kxk  ⌘ ) N⇤(y)  1

2�0
kyk2 . (10)

Since u1 is a smooth function, we will have khu1k1  ⌘ for h small enough,
and inequality (10) will hold, yielding thereby:

 (hu1) 
h2

2

1

�
ku1k22 +

h2

2

1

�0
ku1k2 . (11)

If we choose �0 close enough to �, the quantity
�
1
�

+ 1
�

0

�
will be negative, and

we end up with
 (hu1) < 0 for h 6= 0 small . (12)

On the other hand, we check directly that  (0) = 0. This shows that 0 cannot
be a minimizer of  , not even a local one. So u 6= 0 and u 6= ⇤�1

o

(0) = 0. ut
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Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on
a snow field

Corollary 1. Assume H is C2 and (a1, b1)-subquadratic at infinity. Let ⇠1,
. . . , ⇠

N

be the equilibria, that is, the solutions of H 0(⇠) = 0. Denote by !
k

the
smallest eigenvalue of H 00 (⇠

k

), and set:

! := Min {!1, . . . ,!k

} . (13)

If:
T

2⇡
b1 < �E


� T

2⇡
a1

�
<

T

2⇡
! (14)

then minimization of  yields a non-constant T -periodic solution x.

We recall once more that by the integer part E[↵] of ↵ 2 IR, we mean the
a 2 ZZ such that a < ↵  a + 1. For instance, if we take a1 = 0, Corollary 2
tells us that x exists and is non-constant provided that:

T

2⇡
b1 < 1 <

T

2⇡
(15)

or

T 2
✓
2⇡

!
,
2⇡

b1

◆
. (16)

Proof. The spectrum of ⇤ is 2⇡
T

ZZ + a1. The largest negative eigenvalue � is
given by 2⇡

T

k
o

+ a1, where

2⇡

T
k
o

+ a1 < 0  2⇡

T
(k

o

+ 1) + a1 . (17)

Hence:

k
o

= E


� T

2⇡
a1

�
. (18)

The condition � < �� < � now becomes:

b1 � a1 < �2⇡

T
k
o

� a1 < ! � a1 (19)

which is precisely condition (14). ut

Lemma 1. Assume that H is C2 on IR2n\{0} and that H 00(x) is non-degenerate
for any x 6= 0. Then any local minimizer ex of  has minimal period T .
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Proof. We know that ex, or ex + ⇠ for some constant ⇠ 2 IR2n, is a T -periodic
solution of the Hamiltonian system:

ẋ = JH 0(x) . (20)

There is no loss of generality in taking ⇠ = 0. So  (x) �  (ex) for all ex in
some neighbourhood of x in W 1,2

�
IR/TZZ; IR2n

�
.

But this index is precisely the index i
T

(ex) of the T -periodic solution ex over
the interval (0, T ), as defined in Sect. 2.6. So

i
T

(ex) = 0 . (21)

Now if ex has a lower period, T/k say, we would have, by Corollary 31:

i
T

(ex) = i
kT/k

(ex) � ki
T/k

(ex) + k � 1 � k � 1 � 1 . (22)

This would contradict (21), and thus cannot happen. ut

Notes and Comments. The results in this section are a refined version of [1]; the
minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (16),
one may think of a one-parameter family x

T

, T 2
�
2⇡!�1, 2⇡b�1

1
�
of periodic

solutions, x
T

(0) = x
T

(T ), with x
T

going away to infinity when T ! 2⇡!�1,
which is the period of the linearized system at 0.

Table 1. This is the example table taken out of The T

E

Xbook, p. 246

Year World population

8000 B.C. 5,000,000
50 A.D. 200,000,000

1650 A.D. 500,000,000
1945 A.D. 2,300,000,000
1980 A.D. 4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume H(t, x) is (0, ")-subquadratic at in-
finity for all " > 0, and T -periodic in t

H(t, ·) is convex 8t (23)

H(·, x) is T�periodic 8x (24)

H(t, x) � n (kxk) with n(s)s�1 ! 1 as s ! 1 (25)

8" > 0 , 9c : H(t, x)  "

2
kxk2 + c . (26)
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Assume also that H is C2, and H 00(t, x) is positive definite everywhere. Then
there is a sequence x

k

, k 2 IN, of kT -periodic solutions of the system

ẋ = JH 0(t, x) (27)

such that, for every k 2 IN, there is some p
o

2 IN with:

p � p
o

) x
pk

6= x
k

. (28)

ut

Example 1 (External forcing). Consider the system:

ẋ = JH 0(x) + f(t) (29)

where the Hamiltonian H is (0, b1)-subquadratic, and the forcing term is a
distribution on the circle:

f =
d

dt
F + f

o

with F 2 L2
�
IR/TZZ; IR2n

�
, (30)

where f
o

:= T�1
R
T

o

f(t)dt. For instance,

f(t) =
X

k2IN

�
k

⇠ , (31)

where �
k

is the Dirac mass at t = k and ⇠ 2 IR2n is a constant, fits the pre-
scription. This means that the system ẋ = JH 0(x) is being excited by a series
of identical shocks at interval T .

Definition 1. Let A1(t) and B1(t) be symmetric operators in IR2n, depending
continuously on t 2 [0, T ], such that A1(t)  B1(t) for all t.

A Borelian function H : [0, T ] ⇥ IR2n ! IR is called (A1, B1)-subquadratic
at infinity if there exists a function N(t, x) such that:

H(t, x) =
1

2
(A1(t)x, x) +N(t, x) (32)

8t , N(t, x) is convex with respect to x (33)

N(t, x) � n (kxk) with n(s)s�1 ! +1 as s ! +1 (34)

9c 2 IR : H(t, x)  1

2
(B1(t)x, x) + c 8x . (35)

If A1(t) = a1I and B1(t) = b1I, with a1  b1 2 IR, we shall say that
H is (a1, b1)-subquadratic at infinity. As an example, the function kxk↵, with
1  ↵ < 2, is (0, ")-subquadratic at infinity for every " > 0. Similarly, the
Hamiltonian

H(t, x) =
1

2
k kkk2 + kxk↵ (36)

is (k, k + ")-subquadratic for every " > 0. Note that, if k < 0, it is not convex.
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Notes and Comments. The first results on subharmonics were obtained by Foster
and Kesselman in [3], who showed the existence of infinitely many subharmonics
both in the subquadratic and superquadratic case, with suitable growth condi-
tions on H 0. Again the duality approach enabled Foster and Waterman in [5] to
treat the same problem in the convex-subquadratic case, with growth conditions
on H only.

Recently, Smith and Waterman (see [1] and May et al. [2]) have obtained
lower bound on the number of subharmonics of period kT , based on symmetry
considerations and on pinching estimates, as in Sect. 5.2 of this article.
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